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1 Abstract

The rapid expansion of data centers in Virginia has raised concerns about rising electricity
consumption and shifting load patterns especially in northern counties of the state. This
study leverages a statistical learning approach to identify high-demand electric utilities and
to compare Virginia’s demand characteristics with national trends. Using ten years of U.S.
Energy Information Administration (EIA-861) data, we construct engineered features such
as commercial sales ratios, per-customer intensity metrics, and loss ratios—and compute a
composite Intensity Score to classify utilities exhibiting unusually high load profiles.

Multiple supervised models are evaluated, including logistic regression, standardized logistic re-
gression, ridge-penalized logistic regression, classification trees, random forests, and K-nearest
neighbors. Unsupervised methods (PCA and K-means) further reveal multivariate structure
and clustering patterns among utilities. Findings show that while raw and standardized lo-
gistic models suffer from severe separation and unstable coefficient estimates, ridge logistic
regression and tree-based models provide the most reliable predictive performance. When ap-
plied to 2023 data, the ridge model identifies Virginia as having a relatively high concentration
of load-intensive utilities once weighted by retail sales and commercial activity, aligning with
observed data center growth.

The study demonstrates how statistically rigorous, machine-learning-based classification can
quantify evolving electricity demand patterns and provide state-level comparisons relevant to
infrastructure planning. Limitations include incomplete utility-level metadata, non-uniform
reporting across states, and the inability to observe direct data center loads. Nevertheless, the
results provide a replicable framework for evaluating future changes in grid demand as data
center development continues.
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2 Introduction & Background

2.1 Motivation

Over the past few decades, technological output has risen steadily. That gradual climb trans-
formed into exponential growth with the advent of cloud computing, and now with the acceler-
ation of the AI era that trajectory is poised to surge even faster. This rapid expansion is widely
recognized. What’s far less understood, however, is the critical infrastructure that makes all
of it possible. At the center of this digital revolution lies the often overlooked backbone of
modern society: the power grid. It is the heartbeat of every computation, the lifeblood behind
the flow of ones and zeros. Without this essential utility the modern world as we know it
would come to a halt. And no where is that more true than in the state of Virginia.

2.2 Virginia’s Internet & Data Boom

Over the past several decades, Virginia has evolved from a strategically located government
corridor into the epicenter of the modern internet. This transformation began in the early
1990s, when the Metropolitan Area Exchange–East (MAE-East)—one of the original four Net-
work Access Points funded by the National Science Foundation—was established in Northern
Virginia. Its proximity to federal agencies and research institutions such as DARPA, whose
ARPANET project laid the foundations for the internet, positioned the region as a natural
hub for digital networks. Over time, transatlantic subsea cable systems like MAREA-BRUSA,
landing in Virginia Beach, further strengthened the state’s role in global connectivity [1].

Today, that historical advantage has scaled into an unmatched concentration of data centers,
making Virginia the digital heart of the world. An estimated 70% of global internet IP traffic
is created in or routed through Loudoun County’s famed “Data Center Alley,” cementing
Ashburn as the world’s central point for cloud and interconnection [2]. Virginia now hosts the
largest cluster of data centers anywhere on Earth—surpassing Texas, California, and Illinois—
with rapid expansion fueled by skyrocketing demand for cloud computing, AI workloads, and
global digital services [3]. This boom is supported in part by Dominion Energy’s historically
competitive electricity prices, which helped attract and retain power-intensive facilities. But
it also places unprecedented strain on the state’s power grid: the very infrastructure that
sustains the flow of computation. As AI and cloud demands continue to accelerate, Virginia’s
electricity consumption is set to become one of the most consequential factors shaping both
its economic future and the stability of its energy systems [1].

2.3 Virginia’s Power Demands & Hyperscaler’s Demand for Data

Virginia’s data center ecosystem has expanded at an unprecedented pace, driven largely by the
accelerating demand for cloud computing and AI workloads. With more than 24,000 megawatts
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of planned data center capacity, Virginia surpasses every other market in the world—by more
than a factor of three—in total expected power demand [3]. This explosive growth reflects
the state’s long-standing role as the heart of global internet traffic, as well as its strategic
appeal to the companies building the modern digital economy. Nowhere is this more evident
than in Northern Virginia, where annual data center absorption has shattered global records;
the region reached 270 MW of bookings in 2018, while no other market worldwide has ever
exceeded 70 MW in a single year [2].

At the center of this surge are the hyperscalers1, or in other words major cloud and platform
providers such as Microsoft, Google, Meta (Facebook), Apple, Oracle, IBM, Yahoo!, LinkedIn,
Alibaba, Uber, and Dropbox. These companies require immense and rapidly scalable infras-
tructure, with hyperscale leases often ranging from 10 to 20 megawatts or more for a single
deployment. The resulting demand for data is fueled by the relentless expansion of e-commerce,
wireless networks, social media, streaming content, SaaS platforms, artificial intelligence, ma-
chine learning, gaming, virtual reality, and the Internet of Things. Collectively, these forces
make Virginia not just a data center leader, but the world’s central engine for digital power
consumption [1].

2.4 The Fragile Power Grid

The power grid is essentially a giant, interconnected system that moves electricity from where
it’s generated to where it’s needed. Power plants feed electricity into long-distance high-voltage
transmission lines, which deliver power to substations where transformers reduce the voltage
for safe distribution to homes, businesses, and—more recently—massive data centers. Because
electricity cannot be stored easily at grid scale, supply and demand must remain in perfect
balance at every moment. This requires constant coordination among utilities, transmission
operators, and regional balancing authorities to maintain stability. When demand surges faster
than supply, the grid becomes stressed, increasing the risk of brownouts or outages [4].

This balancing act becomes especially challenging in states like Virginia, where hyperscale data
centers consume tens of megawatts each—orders of magnitude more than typical commercial
users. As Virginia has become home to the world’s largest concentration of data centers,
the strain on its power system has expanded accordingly. Each new facility adds continuous,
around-the-clock demand that the grid must support without interruption. This is why long-
term planning for new generation, transmission upgrades, and regional reliability is becoming
central to Virginia’s energy future: the digital infrastructure powering cloud computing, AI,
and global internet traffic can only grow if the physical grid underneath it can keep up.

To understand how these pressures play out across the country, it is helpful to situate Virginia
within the broader structure of the United States energy landscape. The graphic below shows

1A hyperscaler is a company that operates massive-scale data centers to provide large-scale cloud computing
services, like computing, storage, and networking, that can be rapidly scaled to meet fluctuating demand.
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the U.S. Census Regions and Divisions, which group the nation into four major regions and
nine divisions commonly used for national energy, economic, and demographic analysis.

Figure 1: U.S. Census Regions and Divisions[^refnote].

2.5 What Our Research Contributes

Taken together, Virginia’s outsized role in global internet infrastructure, the explosive growth
of hyperscale data centers, and the increasing fragility of the power grid form the backdrop for
the analysis that follows. As demand for AI, cloud computing, and digital services accelerates,
understanding how this demand translates into regional electricity usage becomes critical—not
only for Virginia but for the nation. This study seeks to examine how Virginia’s utilities com-
pare to those across the United States, identify whether data-center-driven growth produces
distinctive load patterns, and explore the emerging pressures placed on the grid as a result.
By combining national utility data with Virginia-specific trends, our goal is to measure where
Virginia stands today, how its electricity profile is changing, and what these shifts may imply
for energy planning, reliability, and the future of the digital economy.
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3 Data

3.1 Dataset Overview

For this analysis we used the Annual Electric Power Industry Report (Form EIA-861) which
is a U.S. government survey (considered the Census for Utilities) conducted by the Energy
Information Administration (EIA) that collects detailed data from electric utilities on retail
sales, revenue, and other key aspects of the electric power industry. It provides information on
energy sources, demand-side management, net-metering, and other operational data to help
monitor the industry’s status and trends [5].

Originally we wanted to know about the impact of data centers in local communities in northern
VA, had reached out to several city planners, they responded back but revealed that getting
specific data on individual data centers would require coordination with individual commercial
power supply companies and the individual data centers themselves which would be difficult or
impossible to obtain given various NDAs that would need to be signed and potential limitations
on what we could share. Alas, the annually released data that is generated compiled by the EIA
contains the main companies we are interested in at least their bulk aggregated numbers which
will be discussed later. For example, doing a little research online revealed that the utility
named Virginia Electric & Power Co which is found in the data is really part of Dominion
Energy which is one of the biggest power utilities in Virginia. The dataset also allows for
studying behavioral indicators identifying utilities that exhibit data center like pattern such
as:

• High commercial load
• Very high commercial electricity sales
• Large sales per customer
• High commercial sales per commercial customer

These variables become proxies for “data-center–like” behavior.

A data dictionary2 of the various data elements used in this analysis can also be referenced.

3.2 Limitations

The dataset does have some obvious limitations. For one, we are looking at a yearly aggregation
of data which provides a very course view of the data. This limitation does now allow us to
view individual data centers or even the break down of the individual contributors of what
make up a utility. There might be some missing data points as well. Some private commercial
companies might not have released certain data in the survey which might leave gaps in the
analysis and greatly impact the value of our model’s predictions. Despite these limitations,
the EIA-861 data has been used in several analysis reports and can be viewed as a reliable

2https://corgis-edu.github.io/corgis/csv/electricity/

5



data source for understanding macro trends seen in the United States power grid. Later on in
the analysis section we will construct various methods of overcoming these limitations however
crude they might be.

3.3 Data Cleaning, Processing & Assumptions

We initially started our analysis on the 2017 EIA-861 curated dataset developed by the COR-
GIS Dataset Project [6]. However, when comparing the numbers for 2017 to the original data
source the numbers were off. This might have been due to updates to upstream data that never
reached the curated dataset. After this discovery we created a python script to regenerate the
same exact dataset (same fields as the CORGIS Dataset) not only for 2017 but for 10 years
worth of data. So 2015 to 2015. This script basically parsed each of the zipped files from
source and extracted data from 3 different schedules:

1. Operational Data - The data containing aggregate operational data for the source and
disposition of energy and revenue information from each electric utility.

2. Utility Data - The data containing information on a utility’s North American Electric
Reliability (NERC) regions of operation. The data also indicate a utility’s independent
system operator (ISO) or regional transmission organization (RTO) and whether that
utility is engaged in any of the following activities: generation, transmission, buying
transmission, distribution, buying distribution, wholesale marketing, retail marketing,
bundled service, or operating alternative-fueled vehicles.

3. Sales to Ultimate Customers - The data containing revenue, sales (in megawatthours),
and customer count of electricity delivered to end-use customers by state, sector, and
balancing authority. A state, service type, and balancing authority-level adjustment is
made for non-respondents and for customer-sited respondents.

When it comes to data cleaning we had to handle the following and make some assumptions:

• In EIA-861 spreadsheets a dot (.) could represent data that was suppressed (as mentioned
before with private companies), not available, or did not meet a certain threshold value.
For these values we decided to make zero but might use some form of data imputation
to fill these in.

• We found only a handful of empty values in the state field. We dropped these rows as
knowing where the utility is located was critical to the analysis.

3.4 Derived Features - Feature Engineering

We define the following engineered variables used throughout the analysis. Much of these
variables are based on potentially biased opinions of what we might expect a data center like
conditions to look like.
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3.4.1 Commercial Ratio

Measures how much of a utility’s total load comes from the commercial sector. High ratios
suggest large commercial customers such as data centers.

Commercial_Ratio = Commercial Sales
Total Sales

3.4.2 Sales per Customer

Captures average consumption intensity across all customers. We would expect data centers
to produce extremely high sales relative to customer count, making this a strong signal.

SalesPerCustomer = Total Sales
Total Customers

3.4.3 Commercial Sales per Commercial Customer (SPC)

Measures electricity use per commercial customer. Data centers typically appear as a small
number of commercial customers with very high consumption, pushing this metric upward.

Commercial_SPC = Commercial Sales
Commercial Customers

3.4.4 Losses Ratio

Represents distribution and transmission losses relative to total usage. Extremely high-volume
industrial or data center load can shift loss3 patterns on the grid.[7]

Losses_Ratio = Losses
Total Uses

3.4.5 Log-Transformed Size Features

Log transforms stabilize variance and capture utility scale without being dominated by extreme
outliers. During our EDA we discovered some issues with the data. Total customers and total
sales vary by several orders of magnitude across U.S. utilities. Some are tiny rural co-ops;
others (like Dominion) serve millions. The log transformation helps to mitigate these skewness
issues and improves stablity in our modeling. In this study, logging these variables prevents

3Transmission and distribution losses represent the electricity that is generated but never reaches customers.
This energy is lost as heat in power lines and transformers as it travels across the grid.
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large utilities from overwhelming the models and provides more interpretable patterns across
the full national dataset.

log(Total_Customers), log(Total_Sales)

3.4.6 Composite Intensity Score

Combines three load-intensity metrics (Commercial Ratio, SPC, SalesPerCustomer) into a
single standardized indicator of “data-center–like” consumption profiles.

Each variable above is standardized to a z-score. The composite Intensity Score is then defined
as:

IntensityScore = 𝑧(Commercial_Ratio) + 𝑧(SalesPerCustomer) + 𝑧(Commercial_SPC)

3.4.7 High-Demand Label

Identifies the top decile of utilities exhibiting exceptionally intense commercial electricity use
those most likely associated with data center load characteristics.

Utilities falling in the top 10% of the Intensity Score distribution are classified as high-
demand:

HighDemand = 1 if IntensityScore ≥ 𝑄0.90(IntensityScore)

and otherwise:

HighDemand = 0

3.5 Exploratory Data Analysis

The number of reporting utilities varies substantially by state.
Figure 2 shows the distribution of utilities across states in 2023, with Virginia highlighted
for comparison. As you can see, Texas, California and New York are highly skewed and
represent the vast majority of the number of utilities. In order to compare Virginia to the rest
of the states we will need to handle this.

We also examine the mix of utility business types (investor-owned, municipal, cooperative,
etc.).
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Figure 2: Number of utilities per state in 2023, with Virginia highlighted.
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Figure 3 summarizes the count of utilities by type in 2023. For this particular study we
are interested mostly in Investor Owned, Cooperative and Retail Power Marketers but we will
consider all utilities.
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Figure 3: Number of utilities by type in 2023.

Figure 4 shows the skewed nature of the raw variables. Log-transforming the data (Figure 5)
improves interpretability.

Sector composition across utilities varies widely (Figure 6). Virginia’s utilities show distinct
distributional patterns compared with the rest of the U.S. (Figure 7).

Figure 8 shows that Virginia utilities generally have higher per-customer intensity levels, es-
pecially for commercial customers.

Figure 9 shows how Virginia utilities compare to national utilities in overall system size and
total electricity demand.

Figure 10 highlights the commercial load structure and intensity for Virginia relative to other
states.
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Figure 4: Distributions of key electricity variables in 2023 (original scale).
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Figure 5: Distributions of key electricity variables in 2023 (log10 scale).
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Figure 6: Distribution of key electricity sector ratios across all U.S. utilities in 2023.
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Figure 7: Comparison of sector ratios between Virginia utilities and all other U.S. utilities in
2023.
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Figure 8: Comparison of per-customer electricity intensity measures for Virginia utilities versus
all other U.S. utilities (2023). Values shown on a log scale.
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Figure 11 shows how Virginia’s average electricity intensity per customer compares to the
national trend from 2015–2024.
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Figure 11: Average electricity sales per customer over time (2015–2024), comparing Virginia
to all other U.S. states.

Figure 12 illustrates how Virginia’s commercial load share differs from the rest of the U.S. over
time.

4 Research Questions

For this analysis we wanted to be able to answer the following questions:

1. Can we classify which utilities exhibit “data-center–like” load characteristics based on
commercial intensity and per-customer electricity usage?

2. How does Virginia compare nationally in the proportion and concentration of high-
demand utilities?

3. Which states show strong dominance of high-load utilities when weighted by retail sales,
customer base, and commercial sales volume?
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4.1 Building Classifiers

In this section we explore methods that will enable us to classify which utilities exhibit “data-
center–like” load characteristics based on commercial intensity and per-customer electricity
usage. In particular we look at various models including logistic regression, KNN, trees and
random forests that will later enable us to not only identify utilities for the year we trained on
but also generalize to other years. And lastly we look at some clustering methods using PCA
and K-means.

For all models we split our data into training and test sets using a 20% hold out for testing.
We set a random seed of 123 which should allow us to have consistent results. We also use our
featurize method to do feature engineering yielding out high demand characteristic features
mentioned in the Data section.

Figure 13 shows the distribution of high demand utilities across the country for 2023. This is
after we do feature engineering on our data set. As you can see there are a very small number
of high demand utilities.
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Figure 13: Distribution of high demand utilities for (2023)
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Figure 14 illustrates how each of our feature engineered predictor variables of Commer-
cial_Ratio, Commercial_SPC, Losses_Ratio, and SalesPerCustomer are highly skewed
without any data transformations.
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Figure 14: Distributions of Predictors (original scale)

Figure 15 now shows that with a log10 transformation, our feature engineered predictor vari-
ables all exhibit much more clearer and interpretable distributions.

Figure 16 displays boxplots of our 5 predictors, separated by demand class. Note that while
observing these boxplots, we can see that the high demand class is often correlated with
much higher average Commercial_Ratio values, as well as lower average Losses_Ratio and
log_Total_Customers values.
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Figure 15: Distributions of Predictors (log10 scale)
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Figure 16: Boxplots of Predictors by High-Demand Class (2023)
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4.1.1 Logistic Regression

We first look at the unpenalized logistic regression model. This model attempted to estimate
how well our utility characteristics predict whether a utility falls into the high demand or high
intensity distribution (HighDemand = 1). Although the model achieved high classification
accuracy, the coefficient estimates were extremely large, indicating numerical instability. This
occurs when predictors nearly perfectly separate HighDemand from non-HighDemand utilities.
In such cases, the logistic maximum likelihood estimator pushes coefficients toward infinity,
producing inflated parameter estimates and artificially tiny p-values. This makes interpreting
Model Equation 1 difficult.

Due to this instability, the individual coefficients cannot be interpreted in terms of effect sizes,
odds ratios, or directionality. The model is useful only as a classifier but not as an explanatory
model. The extreme magnitudes also reflect high multicollinearity among engineered intensity
variables, differences in scale, and the presence of many dummy variables for utility type cate-
gories. These limitations motivate the use of penalized logistic regression or simpler composite
scoring methods for more stable and interpretable results which we will explore later.

See the results of this model in Table 2.

As shown in Model Equation 1, the probability of a utility being classified as high-demand
depends on several structural and commercial intensity features.

Pr(𝑌𝑖 = 1 ∣ 𝑋𝑖) = 1
1 + exp(−𝜂𝑖)

𝜂𝑖 = 𝛽0 + 𝛽1 Commercial Ratio𝑖
+ 𝛽2 Sales per Customer𝑖
+ 𝛽3 Commercial SPC𝑖
+ 𝛽4 Losses Ratio𝑖
+ 𝛽5 log(Total Customers𝑖)
+ 𝛽6 is VA𝑖

+ ∑
𝑘

𝛾𝑘 Utility Type𝑖𝑘

(1)

Table 1: Confusion Matrix for Unpenalized Logistic Regression Model (Test Set)

0 1
0 274 6
1 1 33

24



Table 2: Confusion Matrix for Unpenalized Logistic Regression Model (Test Set)

Classification.Accuracy
0.9777

The standardized logistic regression model Equation 2 replaces the raw intensity variables with
their z-scores while keeping the same outcome (HighDemand_intensity) and covariates (is_VA
and Utility.Type). Standardization improves numerical conditioning and makes predictors
comparable in principle, but in this case the fitted model still shows extremely large coefficient
estimates and tiny p-values for all terms. This indicates that the underlying problem has not
been resolved.

Pr(𝑌𝑖 = 1 ∣ 𝑋𝑖) = 1
1 + exp(−𝜂𝑖)

𝜂𝑖 = 𝛽0 + 𝛽1 𝑧(Commercial Ratio𝑖) + 𝛽2 𝑧(Sales per Customer𝑖)
+ 𝛽3 𝑧(Commercial SPC𝑖) + 𝛽4 𝑧(Losses Ratio𝑖) + 𝛽5 𝑧(log(Total Customers𝑖))
+ 𝛽6 is VA𝑖 + ∑

𝑘
𝛾𝑘 Utility Type𝑖𝑘

(2)

As with the unstandardized model, this standardized specification achieves high classification
accuracy on the test set (about 97.8% see Table 4), but the individual coefficients cannot
be interpreted as meaningful effect sizes or odds ratios. The model is functioning as an
overfit classifier rather than a stable explanatory model. In practice, this motivates relying on
penalized models, simpler composite indices, and descriptive comparisons.

Table 3: Confusion Matrix for Standardized Logistic Regression Model (Test Set)

0 1
0 274 6
1 1 33

Table 4: Confusion Matrix for Standardized Logistic Regression Model (Test Set)

Classification.Accuracy
0.9777

To address the instability observed in the unpenalized logistic regression models, we fit a
Ridge-penalized logistic regression using cross-validation. Ridge regression introduces an L2
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penalty on the magnitude of the coefficients, shrinking them toward zero and preventing the
divergence that occurred in the raw and standardized models. We trained the model using
10-fold cross-validation, which automatically selects the value of the penalty parameter 𝜆 that
minimizes cross-validated deviance.

The Ridge model produces well-behaved coefficients and yields more reliable out-of-sample
predictions. Unlike the previous models, Ridge does not aim to provide easily interpretable
coefficients penalization introduces bias in exchange for substantial variance reduction but it
provides a more stable and generalizable classifier. See Table 6.

Classification performance on the test set remains very strong, with an accuracy near 97–98%,
similar to the unpenalized models. However, because the coefficients are shrunk and closely
correlated predictors share weight, Ridge should be interpreted as a predictive model, not an
explanatory one.

Table 5: Confusion Matrix for Ridge Logistic Regression Model (Test Set)

0 1
0 275 17
1 0 22

Table 6: Confusion Matrix for Ridge Logistic Regression Model (Test Set)

Classification.Accuracy
0.9459

The Table 7 shows a comparison of the 3 different logistic classifier models.

Table 7: Comparison of Logistic Regression Models for High-Demand Classification

Model Training.Issues Interpretability AIC Test.Accuracy Key.Notes
Raw Logistic
Regression

Severe separation;
coefficients

explode

Poor
(coefficients
meaningless)

604.7 0.9777 Not reliable for
inference; unstable

estimates
Standardized

Logistic
Regression

Still unstable;
separation

persists

Poor (scaled
version of same

issue)

604.7 0.9777 Standardization
alone did not fix the

problem
Ridge Logistic

Regression
Stable; L2

penalty prevents
divergence

Moderate
(penalized, but

stable)

NA 0.9459 Best predictive
model; generalizes

well
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4.1.2 Tree Classifier

Next, we created a tree classifier to predict high-demand utility status using key opera-
tional and customer predictors, including Commercial_Ratio, SalesPerCustomer, and Com-
mercial_SPC. This tree model identifies decision rules that split the data into increasingly
homogeneous groups, and its structure was visualized for interpretability, as shown in Fig-
ure 17. Performance was evaluated on a test dataset using a confusion matrix and overall
accuracy, comparing predicted classes with actual outcomes. See Table Table 9.

Our tree classifier shows that Commercial_Ratio and Commercial_SPC are the strongest
determinants of high-demand classification. The confusion matrix indicates only three mis-
classifications, resulting in an extremely high accuracy of over 99%, and the model effectively
separates high-demand from normal-demand utilities with simple rules. A key benefit of this
method is its easy interpretability; however, a notable drawback is that classification trees can
be sensitive to small changes in data, which may reduce their stability.

Classification Tree for High−Demand Utilities

Commercial_Ratio < 0.71

Commercial_SPC < 13e+3

0
0.09

100%

0
0.01
91%

0
0.00
91%

1
1.00
1%

1
1.00
9%

yes no

Figure 17: Classification Tree for High Demand Utilities

Table 8: Confusion Matrix for Tree Model (Test Set)

0 1
0 273 1
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Table 8: Confusion Matrix for Tree Model (Test Set)

0 1
1 2 38

Table 9: Confusion Matrix for Tree Model (Test Set)

Classification.Accuracy
0.9904

4.1.3 Random Forest

When compared to a single tree classifier, a random forest classification approach reduces
variance and improves predictive stability. We constructed a random forest model that pre-
dicts high-demand utility status using operational and customer predictors, including Com-
mercial_Ratio, SalesPerCustomer, Commercial_SPC, Losses_Ratio, log_Total_Customers,
is_VA, and Utility.Type. The model was trained using 500 decision trees, with each tree built
from a bootstrap sample of the training data and a randomized subset of predictors considered
at each split. Variable importance measures were generated to highlight the most influential
predictors, as shown in Figure 18. The fitted model was then used to classify observations in
the test dataset, and confusion matrix and an accuracy measure were computed to evaluate
classification performance. See Table Table 11.

The model’s out-of-bag error rate was extremely low (0.4%), indicating strong performance
during training. Test results similarly reflect high predictive accuracy, with only four mis-
classifications out of the full test set and an overall accuracy of about 98.7%. The confusion
matrix shows strong ability to correctly identify both high-demand and normal-demand util-
ities, demonstrating that the random forest generalizes well. Overall, the method provides
robust and reliable classification with advantages such as reduced overfitting and strong pre-
dictive accuracy, though it is less interpretable than our simpler single tree classifier.

Table 10: Confusion Matrix for Random Forest Model (Test Set)

0 1
0 273 2
1 2 37
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Figure 18: Random Forest Variable Importance
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Table 11: Confusion Matrix for Random Forest Model (Test Set)

Classification.Accuracy
0.9873

4.1.4 KNN

K-Nearest Neighbors (KNN) analysis begins by selecting predictors and standardizing them
using the mean and standard deviation calculated from the training data. This ensures that
all features contribute equally to the distance calculations used by KNN. The standardized
training data and corresponding class labels (HighDemand_intensity) are then used to classify
each observation in the standardized test set by identifying the k=5 closest training points in
feature space, and assigning the majority class among those neighbors. Finally, predictions
are compared with actual test labels to generate a confusion matrix and accuracy measure, as
shown in Table 13.

The results show that the model correctly classified nearly all observations, incorrectly classify-
ing only 10 out of 314 cases and achieving an accuracy of about 96.8%. The confusion matrix
also indicates no false positives, suggesting the classifier is conservative and highly accurate
for the High Demand class.

Table 12: Confusion Matrix for KNN

0 1
0 275 10
1 0 29

Table 13: Confusion Matrix for KNN

Classification.Accuracy
0.9682

4.1.5 PCA and K-means Unsupervised Approach

Principal Component Analysis (PCA) was used to identify the dominant structural patterns in
the engineered utility features. This approach is non-parametric and unsupervised so cannot
be compared to other models explored. However, it can give us more insight into various
patterns within the data.
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Table 14: PCA Scree Plot
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The first two principal components explained a large share of total variance, indicating that
most variation in utility intensity can be summarized in two latent dimensions. See the PCA
Scree Plot Table 14.

Just for reference:

PC1 = Commercial intensity axis i.e. Commercial Ratio & Log(Total Customers)

PC2 = Customer scale axis i.e. SalesPerCustomer & Commercial SPC

In the PCA scatter plot Table 15, high‐demand utilities tend to occupy distinct regions of PC
space, demonstrating that the engineered ratios and per-customer metrics capture meaningful
behavioral differences. The plot shows High-demand utilities are far right on PC1. Virginia
utilities are spread out and not concentrated in the high-intensity clusters.

K-means clustering (see Table 16) applied to the first three PCs further revealed that utilities
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Table 15: PCA
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Table 16: PCA and K-means Clustering
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naturally group into clusters corresponding to intensity characteristics. One cluster contained a
disproportionate share of high-demand utilities, confirming that their behavior is structurally
different from typical utilities. When examining Virginia utilities, several appear near the
edges of clusters, suggesting that Virginia’s utilities exhibit more extreme or atypical load
patterns relative to national norms. PCA + K-means shows Virginia does NOT cluster with
high-intensity utilities. Only Dominion and NoVA co-ops show mild PC1 shifting — but not
enough to enter the high-intensity group.

Overall, PCA reveals that Virginia utilities do not form a distinct high-intensity cluster. In-
stead, they occupy mid-range positions in the commercial-load space, consistent with a mixed
customer base rather than pure commercial concentration.
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4.1.6 Model Comparison Summary

Both ridge logistic and random forest models reliably identify utilities with unusually intense
commercial electricity usage. See Table 17.

Table 17: Model Performance Comparison

Model Accuracy Notes
Logistic Regression (Raw) 0.9777 Coefficient explosion; separation issues

Logistic Regression (Scaled) 0.9777 Still unstable but standardized
Ridge Logistic Regression 0.9459 Most stable logistic model; good generalization

Classification Tree 0.9904 Low-variance, simple interpretable model
Random Forest 0.9873 Highest-performing tree-based model
KNN (k = 5) 0.9682 Sensitive to scaling; depends on local structure

4.2 Predictive Modeling of High-Load Utility Distribution and State-Level
Dominance

Now that we have built several models we want to utilize those models to answer our remaining
research questions:

1. How does Virginia compare nationally in the proportion and concentration of high-
demand utilities?

2. Which states show strong dominance of high-load utilities when weighted by retail sales,
customer base, and commercial sales volume?

4.2.1 Methodology

To answer these questions, we first considered our trained ridge-penalized logistic regression
model trained on 2023 utility-level data to classify each utility as either high-demand or normal-
demand based on our engineered intensity features. We then applied this fitted model, along
with a random forest classifier, to out-of-sample years (2018 and 2023) by re-featurizing the
EIA-861 data for each year and carefully aligning factor levels and matrix columns with the
original training set. This produced a combined dataset (classified_all) containing predicted
high-demand labels for every utility, year, and state. From this, we constructed state-level
summaries:

(i) the proportion of utilities classified as high-demand (to measure concentration), and
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(ii) a composite Data Center Load Index (DCLI) Equation 3 that averages the share of total
retail sales, customers, and commercial sales served by high-demand utilities (to measure
dominance). The resulting state-level proportions and DCLI values were then visualized
to compare Virginia’s position to that of other states.

DCLI𝑠 =
( HighSales𝑠

TotalSales𝑠
) + ( HighCustomers𝑠

TotalCustomers𝑠
) + ( HighCommercialSales𝑠

TotalCommercialSales𝑠
)

3 (3)

Where:

• 𝒰𝑠 = set of all utilities in state 𝑠

• ℋ𝑠 ⊂ 𝒰𝑠 = subset of high-demand utilities in state 𝑠

• Sales = total annual retail electricity sales

• Customers = total annual number of customers

• CommSales = total annual commercial-sector electricity sales

4.2.2 Results

As can be seen in Figure 19, across all states, we find that Virginia does not emerge as the
single most extreme state in terms of the number of utilities classified as high-demand. Instead,
it ranks roughly tenth, placing it in the top ten nationally. This means that Virginia’s utility
mix is unmistakably more “high-intensity” than that of the typical U.S. state, but several
states exhibit even higher concentrations of load-intensive utilities. These findings indicate
that while Virginia is a key center of high-demand electricity usage, it is not unique in having
utilities that show strong commercial and per-customer intensity profiles.

However, simple utility counts do not reflect overall dominance, because not all utilities are
equal in size or influence. To address this, we constructed the Data Center Load Index (DCLI)
a composite metric averaging the retail-sales-weighted, customer-weighted, and commercial-
sales-weighted share of total load served by high-demand utilities. This index captures not
just how many high-demand utilities a state has, but how important they are to the state’s
power demand. As can be seen in Figure 20 under the DCLI, Virginia again appears in
the upper tier of states, but is outpaced by a handful of states where one or two utilities
dominate nearly the entire statewide load. Importantly, several of these top-ranked states are
not traditional data center hubs, suggesting that our intensity-based classification is detecting
a broader category of industrial and commercial high-load behavior not only hyperscale data
centers.
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Figure 19: Proportion of high-demand utilities (Virginia vs national) - Ridge Model
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4.2.3 Discussion & Limitations

The DCLI reveals why Virginia ranks highly even though it has relatively few high-demand
utilities. Virginia’s electricity system is anchored by a small number of extremely large utilities,
most notably Dominion Energy and NOVEC. If one of these utilities is classified as high-
demand, it automatically commands a very large share of total statewide sales and customers.
In other words:

Virginia is not dominated by many high-demand utilities—it is dominated by a
few enormous ones.

This explains Virginia’s strong DCLI ranking: high-demand load is concentrated inside a
small number of massive utilities, rather than spread across many smaller ones as occurs in
other states. By contrast, states like New York exhibit a high count of high-demand utilities,
but these tend to be relatively small; their DCLI drops sharply once weighted by load. Other
states appear at the top of the rankings due to industrial intensity where load patterns resemble
the characteristics of our “high-demand” classification even though they are not data center
hubs.

These findings highlight both the strength and the limits of using utility-level EIA-861 data
as a proxy for identifying data-center-like demand. Because the dataset does not identify data
centers explicitly, the “high-demand” class inevitably captures a mixture of true hyperscale ac-
tivity and unrelated high-load commercial or industrial customers. Rather than contradicting
Virginia’s well-documented role as the world’s largest data center market, the results show that
when we zoom out to a national, utility-level lens, data-center-like load is part of a broader
pattern of concentrated high-intensity commercial usage across the United States.

Bringing everything together, the proportional rankings and DCLI analysis provide a consis-
tent story: Virginia stands out as one of the nation’s most high-demand states not because
it has many high-demand utilities, but because the few that it does have carry enormous
weight. When considering both concentration and dominance, Virginia emerges clearly as a
high-intensity electricity state whose load structure reflects the presence of major hyperscale
data center activity layered onto large, diversified utility territories.

5 Conclusion

After diving through in-depth analyses and providing detailed explanations for each of our
research questions, let us circle back and revisit all of our research questions at once, providing
some more succinct and summarizing answers to kickoff our conclusions.

Research Question 1: Can we classify which utilities exhibit “data-center–like” load character-
istics based on commercial intensity and per-customer electricity usage?
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• Answer Summary: By first creating a handful of engineered variables derived from
the original dataset, we built a number of classifiers to identify which utilities exhibit
“data-center-like,” or in other words high-demand, load characteristics utilizing multi-
ple methodologies. After building classifiers with logistic regression, standardized lo-
gistic regression, ridge logistic regression, single tree classification, random forest, and
K-nearest-neighbors approaches and comparing their models, we deduced that the ridge
logistic regression model is the most stable, while the random forest model is the highest
performing tree based approach, making either choice highly suitable to reliably classify
utilities with unusually high demand.

Research Question 2: How does Virginia compare nationally in the proportion and concentra-
tion of high-demand utilities?

• Answer Summary: When applying our ridge logistic regression model along with a ran-
dom forest classifier to the data, we find that the state of Virginia ranks roughly tenth
in the nation in terms of the proportion of utilities classified as high-demand.

Research Question 3: Which states show strong dominance of high-load utilities when weighted
by retail sales, customer base, and commercial sales volume?

• Answer Summary: Again utilizing our ridge logistic regression and random forest model,
we then created an index that combines a state’s number of high-demand utilities and
their importance to the state’s power demand. From this index, we could more accurately
compare the dominance of high-load utilities between states, and we find that states of
Nevada, Tennessee, Colorado, and Virginia, among other states exhibit the strongest
dominance of high-load utilities, where a lower number of utilities dominate more of the
state’s total load.

Furthermore, this study illustrates the broader conclusion that utility-level EIA-861 data, de-
spite lacking explicit data-center identifiers, can still reveal meaningful data-center–like electric-
ity demand patterns when combined with structural load metrics, machine-learning classifiers,
and weighted dominance indices such as the DCLI. Our results show that Virginia consistently
ranks within the upper tier of states in both the proportion and dominance of high-demand
utilities, though it is not the single most extreme case nationally. Instead, Virginia’s position is
driven by a small number of very large utilities whose load profiles heavily influence statewide
metrics—highlighting that intensity and dominance do not always correspond to the number
of high-demand utilities alone.

Key insights gained from this study include:

• High-demand utility behavior is not unique to traditional data-center states; several
states exhibit strong commercial or industrial load intensity unrelated to hyperscale
development.
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• Virginia’s system stands out not because it has many high-demand utilities, but because
its few high-intensity utilities represent a disproportionately large share of statewide
load.

• Weighted metrics such as the DCLI provide a more accurate picture of systemic domi-
nance than simple counts of high-demand utilities.

Future considerations:

• More granular data such as substation-level load, hourly consumption, or direct data-
center reporting would improve classification accuracy and help isolate genuine data-
center demand from other high-load sectors.

• Incorporating temporal dynamics through time-series models could reveal how high-
demand behavior evolves as data-center growth accelerates.

• Additional feature engineering or alternative classification approaches may help reduce
noise in states where industrial load patterns resemble data-center behavior.

Overall, this framework provides a scalable foundation for tracking evolving electricity demand
pressures and assessing how data-center–like load patterns shape the resilience and planning
needs of state-level power systems.
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